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Abstract. Schwinger’s approach gives a fresh look on Tamm’s problem (charge, being initially at
rest, exhibits an instant acceleration, moves with a finite velocity, and, after an instant deceleration,
goes to the state of rest). Schwinger’s angular and frequency distributions are compared with
Tamm’s ones which in turn are compared with exact distributions. Criteria for the validity of
Tamm’s formulae are checked by numerical calculations.

1. Introduction

The aim of this consideration is to analyse frequency and angular distributions of a radiation
in the so-called Tamm problem. The latter treats the point charge as at rest in a medium at the
space point z = −z0 up to a moment t = −t0. In the time interval −t0 < t < t0 the charge
moves with velocity v that can be smaller or greater than the velocity of light in the medium,
cn. After the moment t = t0 the charge is again at rest at the point z = z0. This problem
was first considered by Tamm [1] in 1939. Later, it was analysed by qualitatively Lawson
[2, 3] and numerically by Zrelov and Ruzicka [4, 5]. In 1996, the exact solution of Tamm’s
problem was found for the non-dispersive medium [6]. A careful analysis of this solution was
given in [7]. It was shown there that Tamm’s formulae do not describe Cherenkov radiation
(CR) properly. On the other hand, Schwinger [8] suggested evaluating frequency and angular
spectra of the radiation produced by an arbitrarily moving charge without explicitly using the
electromagnetic field strengths. This method was successfully applied to the consideration of
synchrotron motion [9, 10].

In this consideration, we compare Tamm’s and Schwinger’s approaches between
themselves and with an exact solution of Tamm’s problem.

The plan of our exposition is as follows. In section 2, we reproduce Tamm’s frequency
and angular distributions of the radiation produced by a point charge moving uniformly on
a finite space interval. In section 3, by applying Schwinger’s method to the consideration of
Tamm’s problem we obtain the instant (i.e. at a given moment of time) angular and frequency
distributions of the radiated power. The integration of the angular distribution over time
motion gives the angular-frequency distribution of the energy radiated for a finite time interval.
Performing angular integration, one obtains the frequency distribution of the energy radiated
for a finite time interval. In particular cases one arrives either at Tamm–Frank or Tamm
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formulae. The exact electromagnetic fields of Tamm’s problem are given in section 4. They
are compared with the famous Tamm formula describing the angular-frequency distribution of
the radiated energy. Criteria for the validity of Tamm’s formula are given. These criteria are
checked by the numerical calculations presented in the same section.

2. Tamm’s original approach

Tamm considered the following problem. A point charge is at rest at the point z = −z0 of the
z-axis up to a moment t = −t0. In the time interval −t0 < t < t0 it moves uniformly along
the z-axis with velocity v greater than the velocity of light in the medium cn. For t > t0, the
charge is again at rest at the point z = z0. The non-vanishing Fourier component z of the
vector potential (VP) is given by

Aω = 1

c

∫ z0

−z0

1

R
jω(x

′, y ′, z′) exp (−iωR/cn) dx ′ dy ′ dz′

where R = [(x − x ′)2 + (y − y ′)2 + (z − z′)2]1/2, jω = 0 for z′ < −z0 and z′ > z0 and
jω = eδ(x ′)δ(y ′) exp (−iωz′/v)/2π for −z0 < z′ < z0. Inserting all of this into Aω and
integrating over x ′ and y ′, one finds

Aω(x, y, z) = e

2πc

∫ z0

−z0

dz′

R
exp

[
−iω

(
z′

v
+
R

cn

)]

R = [ρ2 + (z − z′)2]1/2 ρ2 = x2 + y2.

(2.1)

At large distances from the charge (R � z0) one has R = R0 − z′ cos θ, cos θ = z/R0, R0 =
(x2 + y2 + z2)1/2. Inserting this into (2.1) and integrating over z′ one obtains

Aω(ρ, z) = eβq(ω)

πR0ω
exp (−iωR0/cn) q(ω) = sin [ωt0(1 − βn cos θ)]

1 − βn cos θ

β = v

c
βn = v

cn
t0 = z0

v
.

(2.2)

Now we evaluate the field strengths. In the wave zone, where R0 � c/nω, the non-vanishing
spherical components are

Eθ = Hφ = − 2eβ

πcR0
sin θ

∫ ∞

0
nq(ω) sin[ω(t − R0/cn)] dω. (2.3)

The energy flux through the sphere of the radius R0 is

W = R2
0

∫
Sr sin θ dθ dφ Sr = c

4π
EθHφ.

Inserting Eθ and Hφ one obtains

W = 2e2β2

πc

∫ ∞

0
nJ (ω) dω J(ω) =

∫ π

0
q2 sin θ dθ. (2.4)

For ωt0 � 1, J can be evaluated in a closed form

J = JBS = 1

β3n3

(
ln

1 + βn

|1 − βn| − 2βn

)
for βn < 1 (2.5)

and

J = JBS + JCh JCh = πωt0

βn

(
1 − 1

β2
n

)
for βn > 1. (2.6)
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Tamm identified JBS with the spectral distribution of the bremsstrahlung (BS), arising from
instant acceleration and deceleration of the charge at the moments ±t0, respectively. On the
other hand, JCh was identified with the spectral distribution of the Cherenkov radiation. This
is supported by the fact that

WCh = 2e2β2

πc

∫ ∞

0
nJCh(ω) dω = 2e2βt0

c

∫
βn>1

ω dω

(
1 − 1

β2
n

)
(2.7)

strongly resembles the famous Frank–Tamm formula [11] for an infinite medium obtained in
quite a different way.

The main result following from Tamm’s formulae is that the energy emitted during the
whole charge motion into the solid angle d$, in the frequency interval dω is given by

d2E
d$ dω

= e2

π2cn

[
sin θ

sinωt0(1 − βn cos θ)

cos θ − 1/βn

]2

. (2.8)

This formula is frequently used by experimentalists (see, e.g., [12–14]) for the identification
of Cherenkov radiation.

3. Schwinger’s approach to Tamm’s problem

We begin with the continuity equation following from Maxwell equations:

div �S +
∂

∂t
E = −�j · �E. (3.1)

Here

�S = c

4π
( �E × �H) E = 1

8π
(εE2 + µH 2).

Integrating this equation over the volume V of the sphere S of radius r , surrounding a moving
charge, one obtains the following equation describing the energy conservation:∫

Srr
2 d$ +

∂

∂t

∫
E dV = −

∫
�j · �E dV. (3.2)

The usual interpretation of this equation proceeds as follows (see, e.g., [15, pp 276–7]):

The first term on the left-hand side represents the electromagnetic energy flowing out
of the volume V through the surface Sr , and the second term represents the time rate
of change of the energy stored by the electromagnetic field within V .

And furthermore:

The right-hand side, on the other hand, represents the power supplied by the external
forces that maintain the charges in dynamic equilibrium.

Schwinger [8] identifies energy losses of a moving charge with the integral on the right-hand
side of (3.1)

WS = −
∫

�j · �E dV. (3.3)

Substituting �E = −�∇) − �̇A/c and integrating by parts, one obtains

WS = −
∫

�j · �E dV =
∫

�j · ( �∇) + �̇A/c) dV = −
∫
(div �j − �̇A/c) dV

=
∫
(ρ̇) + �̇A/c) dV = d

dt

∫
ρ) dV −

∫
(ρ)̇ − �̇A/c) dV. (3.4)
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By definition, WS is the energy lost by a moving charge per unit time. Schwinger discards
the first term in the second line of (3.4) on the grounds that ‘it is of an accelerated energy
type’. The retarded and advanced electromagnetic potentials corresponding to charge current
densities ρ and �j are given by

)ret,adv = 1

ε

∫
1

R
ρ(�r ′, t ′)δ(t ′ − t ± R/cn) dV ′ dt ′

= 1

2πε

∫ ∞

−∞
dω

1

R
ρ(�r ′, t ′) exp[iω(t ′ − t ± R/cn)] dV ′ dt ′

�Aret,adv = µ

c

∫
1

R
�j(�r ′, t ′)δ(t ′ − t ± R/cn) dV ′ dt ′

= µ

2πc

∫ ∞

−∞
dω

1

R
�j(�r ′, t ′) exp[iω(t ′ − t ± R/cn)] dω dV ′ dt ′

(3.5)

where ε and µ are the electric and magnetic permittivities, respectively; R = |�r−�r ′| and + and
− signs refer to retarded and advanced potentials, respectively. Further, Schwinger represents
the retarded electromagnetic potentials in the form

)ret = 1
2 ()ret + )adv) + 1

2 ()ret − )adv)

�Aret = 1
2 (

�Aret + �Aadv) + 1
2 (

�Aret − �Aadv)
(3.6)

and discards the symmetric part of these equations on the grounds that:

the first part of (3.3), derived from the symmetrical combination of �Eret and �Eadv ,
changes sign on reversing the positive sense of time and therefore represents a reactive
power. It describes the rate at which the electron stores energy in the electromagnetic
field, an inertial effect with which we are not concerned. However, the second part
of (3.3), derived from the antisymmetrical combination of �Eret and �Eadv , remains
unchanged on reversing the positive sense of time and therefore represents resistive
power. Subject to one qualification, it describes the rate of irreversible energy transfer
to the electromagnetic field, which is the desired rate of radiation.

Correspondingly, electromagnetic potentials are reduced to

) = − 1

πε

∫ ∞

0
dω

1

R
ρ(�r ′, t ′) sin[ω(t ′ − t)] sin(knR) dV ′ dt ′

�A = − µ

πc

∫ ∞

0
dω

1

R
�j(�r ′, t ′) sin[ω(t ′ − t)] sin(knR/) dV ′ dt ′ kn = ω/cn.

(3.7)

Substituting this into (3.4), we obtain

WS =
∫ ∞

0
P(ω, t) dω (3.8)

where

P(ω, t) = d2E

dt dω
= − ω

πε

∫
dV dV ′ dt ′

sin knR

R
cosω(t − t ′)

×
[
ρ(�r, t)ρ(�r ′, t ′) − 1

c2
n

�j(�r, t) · �j(�r ′, t ′)
]

(3.9)

is the energy lost by a moving charge per unit time and per frequency unit. The angular
distribution P(�n, ω, t) is defined as

P(ω, t) =
∫

P(�n, ω, t) d$ (3.10)
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where

P(�n, ω, t) = d3E

dt dω d$
= − nω2

4π2cε

∫
dV dV ′ dt ′ cosω

[
(t ′ − t) +

1

cn
�n(�r − �r ′)

]

×
[
ρ(�r, t)ρ(�r ′, t ′) − 1

c2
n

�j(�r, t) · �j(�r ′, t ′)
]

(3.11)

is the energy lost by a moving charge per unit time, per frequency unit and per unit solid angle.
Here �n is the vector defining the observation point.

Equations (3.9) and (3.11) were obtained by Schwinger [9]. We apply them to the Tamm
problem. In what follows we limit ourselves to a dielectric medium for which ε = n2.

3.1. Instant power frequency spectrum

For the treated Tamm problem, charge and current densities are given by

jz = evδ(x)δ(y).(t + t0).(t0 − t)δ(z − vt)

ρ(�r, t) = eδ(x)δ(y)[.(−t − t0)δ(z + z0)

+.(t + t0).(t0 − t)δ(z − vt) + .(t − t0)δ(z − z0)].

(3.12)

Inserting these expressions into (3.9) and performing integrations, one obtains

P(ω, t) = −ωe2

πε
[.(−t − t0)P1 + .(t − t0)P2 + .(t + t0).(t0 − t)P3] (3.13)

where

P1 = − sinω(t + t0)

cn
+

sin 2ωt0βn
2ωt0v

sinω(t − t0) +
1

2v
cosω(t + t0)

×{si[2t0ω(1 + βn)] − si[2t0ω(1 − βn)]} +
1

2v
sinω(t + t0)

×
{

1

2
ln

(
1 + βn

1 − βn

)2

+ ci[2ωt0|1 − βn|] − ci[2ωt0(1 + βn)]

}

P2 = sinω(t − t0)

cn
− sin 2ωt0βn

2vt0ω
sinω(t + t0) +

1

2v
cosω(t − t0)

×{si[2t0ω(1 + βn)] − si[2t0ω(1 − βn)]} − 1

2v
sinω(t − t0)

×
{

1

2
ln

(
1 + βn

1 − βn

)2

+ ci[2ωt0|1 − βn|] − ci[2ωt0ω(1 + βn)]

}

P3 = − sinωβn(t + t0)

v(t + t0)

sinω(t + t0)

ω
+

sinωβn(t − t0)

v(t − t0)

sinω(t − t0)

ω
− 1 − β2

n

2v

×{si[(1 − βn)ω(t0 − t)] − si[(1 + βn)ω(t0 − t)]

+si[(1 − βn)ω(t0 + t)] − si[(1 + βn)ω(t0 + t)]}.

(3.14)

Here si(x) and ci(x) are the integral sine and cosine. They are defined by the equations

si(x) = −
∫ ∞

x

sin t

t
dt = −π

2
+

∫ x

0

sin t

t
dt = −π

2
−

∞∑
k=1

(−1)k

(2k − 1)(2k − 1)!
x2k−1

ci(x) = −
∫ ∞

x

cos t

t
dt = C + ln x −

∫ x

0

1 − cos t

t
dt = C + ln x +

∞∑
k=1

(−1)k

2k(2k)!
x2k.
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Here C ≈ 0.577 is Euler’s constant. For large and small x, si(x) and ci(x) behave as

si(x) → −cos x

x
− sin x

x2
ci(x) → sin x

x
− cos x

x2
for x → +∞

si(x) → −π +
cos x

|x| +
sin |x|

x2
for x → −∞

si(x) → − 1
2π + x ci(x) → C + ln x − 1

4 x2 for x → 0.

The following relations
∫ x

0

sin2 t

t
dt = 1

2C + 1
2 ln 2|x| − 1

2 ci(2|x|) si(x) + si(−x) = −π

will also be useful.
The non-vanishing of P1 and P2 terms in (3.13) is due to the fact that Fourier transforms

of a static charge density corresponding to charge at rest prior to the beginning of the charge
motion (t < −t0) and after its termination (t > t0) contribute to (3.9) and (3.11). To see this
explicitly, we write out the Fourier transform of charge density (3.12):

ρ(�r, ω) = 1

2π

∫ ∞

−∞
exp(−iωt)ρ(�r, t) dt

= 1

2π
eδ(x)δ(y)[δ(z + z0)

∫ −t0

−∞
exp(−iωt) dt + δ(z − z0)

∫ ∞

t0

exp(−iωt) dt

+
1

v
.(z + z0).(z0 − z) exp(−iωz/v)].

The first term on the right-hand side corresponds to the charge which rests at the point z = −z0

up to a moment t = −t0; the second term on the right-hand side corresponds to the charge
which rests at the point z = z0 after the moment t = t0. Finally, the third term corresponds to
the charge moving between −z0 and z0 points in the time interval −t0 < t < t0. It should be
noted that the first and second terms in this expression are Fourier densities of a charge which
does not permanently rest at the points z = ±z0, but up to a moment −t0 and after the moment
t0, respectively. In fact, the Fourier density corresponding to a charge which is permanently at
rest at the point z = z0 is

e

2π
δ(z − z0)

∫ ∞

−∞
exp(iωt) dt = eδ(z − z0)δ(ω).

In the limit ωt0 → ∞, equations (3.14) pass into

P1 = − 1

cn
sin[ω(t + t0)]

(
1 − 1

2βn
ln

1 + βn

1 − βn

)

P2 = +
1

cn
sin[ω(t − t0)]

(
1 − 1

2βn
ln

1 + βn

1 − βn

)
P3 = 0

for βn < 1 and

P1 = − 1

cn
sin[ω(t + t0)]

(
1 − 1

2βn
ln

1 + βn

βn − 1

)
+

π

2v
cosω

(
t +

z0

v

)

P2 = 1

cn
sin[ω(t − t0)]

(
1 − 1

2βn
ln

1 + βn

βn − 1

)
+

π

2v
cosω

(
t − z0

v

)

P3 = −π

v
(β2

n − 1)

(3.15)
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for βn > 1. It is seen that the energy radiated for the time interval −t1 < t < t1, t1 < t0 equals
zero for βn < 1 and equals 2ωve2t1(1 − 1/β2

n)/c
2 for βn > 1. This coincides exactly with the

Cherenkov radiation spectrum for unbounded charge motion (see, e.g., Frank’s book [11]). It
should be noted that expressions for P3 in (3.15) were obtained under the assumption that the
arguments of si and ci of P3 entering into (3.14) are sufficiently large, that is, there should be
ω(t0 − t) � 1. This means that P3 in (3.15) are valid if the observation moment t is not too
close to t0.

On the other hand, the terms P1 and P2 in (3.15) were obtained without this assumption.
In particular, the term P2 different from zero for t > t0 shows how the bremsstrahlung and
Cherenkov radiation behave for t > t0, i.e. after termination of charge motion. Since the part
of P2

1

cn
sin

[
ω

(
t − z0

v

)](
1 − 1

2βn
ln

βn + 1

|βn − 1|
)

is present both for βn < 1 and βn > 1, it may be associated with BS. On the other hand, the
part of P2

π

2v
cos

[
ω

(
t − z0

v

)]

that differs from zero only for βn > 1 may be conditionally attributed to the Cherenkov
post-action.

We observe that for t < −t0 and t > t0, the radiation intensity is a rapidly oscillating
function of time t . The time average of this intensity is zero, so it could hardly be observed
experimentally. Since, on the other hand, for βn > 1, the radiation intensity does not depend
on time in the time interval −t1 < t < t1, t1 � t0, it contributes coherently to the radiated
energy.

To obtain the energy radiated for a finite time interval, one should integrate (3.13) over
t . However, the integrals that arise involve integral sine and cosine functions. Since we did
not succeed in evaluating these integrals in a closed form, we follow an indirect method in
the following sections. In section 3.2, we evaluate the instant angular-frequency distribution
of the radiated energy. Integrating it over time we obtain (section 3.3) the angular-frequency
distribution of the energy radiated for a finite time interval. Finally, integrating the latter over
angular variables we obtain a closed expression for the frequency distribution of the energy
radiated for a finite time interval (section 3.4).

3.2. Instant angular-frequency distribution of the power spectrum

Due to the axial symmetry of the problem, �n ·(�r−�r ′) = cos θ(z−z′) in the integrand in (3.11),
where θ is the inclination angle of �n towards the motion axis. Integration over the spacetime
variables in (3.11) gives

P(�n, ω, t) = d3E
dt dω d$

= −ωe2β

2π2c

sin[ωt0(1 − βn cos θ)]

1 − βn cos θ

×[.(−t − t0)P1n + .(t − t0)P2n + .(t + t0).(t0 − t)P3n]. (3.16)

Here

P1n = cos θ cos[ω(t + t0βn cos θ)]

P2n = cos θ cos[ω(t − t0βn cos θ)]

P3n = (cos θ − βn) cos[ωt(1 − βn cos θ)].
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3.3. Angular-frequency distribution of the radiated energy for a finite time interval

Integrating (3.16) over the time interval −t1 < t < t1, t1 < t0, one obtains the Fourier
distribution of the energy detected for a time 2t1 radiated by a particle moving in the time
interval 2t0, t1 < t0:

E(�n, ω, t1) =
∫ t1

−t1

P(�n, ω, t) dt

= e2β

π2c
(βn − cos θ)

sinωt0(1 − βn cos θ)

1 − βn cos θ

sinωt1(1 − βn cos θ)

1 − βn cos θ
. (3.17)

Let ωt0 → ∞. Then,

E(�n, ω, t1) → e2βωt1

πc

(
1 − 1

β2
n

)
δ

(
cos θ − 1

βn

)
. (3.18)

This coincides with the angular-frequency distribution of the radiated energy in Tamm–Frank
theory [11] describing the unbounded charge motion. For cos θ = 1/βn equation (3.17)
reduces to

E(�n, ω, t1) = e2

πnc
(β2

n − 1)ω2t0t1.

It vanishes for βn = 1.
Let t1 > t0. Then,

E(�n, ω, t1) = e2β

π2c

sin[ωt0(1 − βn cos θ)]

1 − βn cos θ

×
[
βn sin2 θ

sinωt0(1 − βn cos θ)

1 − βn cos θ
− cos θ sinω(t1 − t0βn cos θ)

]
(3.19)

is the angular-frequency distribution of the energy detected for the time interval 2t1 > 2t0.
The first term in square brackets coincides with Tamm’s angular distribution (2.8). The second
term originating from integration of P1 and P2 terms in (3.16) describes the boundary effects.
The physical reason for the appearance of the extra term in (3.19) (the second term in square
brackets) is due to the following reason. The magnetic field �H is defined as the curl of VP
(2.2). Tamm obtained the electric field from the Maxwell equation

curl �H = ε

c

∂ �E
∂t

valid outside the motion interval. In the ω representation this equation looks like

curl �Hω = iωε

c
�Eω.

This equation suggests that the contribution of the static electric field existing before the
beginning of the charge motion and after its termination has dropped from Tamm’s formulae
given in section 2 (because VP (2.1) and the magnetic field (2.3) describe only the motion of
charge on the interval (−z0, z0)). On the other hand, Schwinger’s equations (3.9) and (3.11)
contain the static electric field contributions of a charge which is at rest up to the moment
t = −t0 and after the moment t = t0. They are responsible for the appearance of an extra
term in (3.19). In the �r, t representation, the contribution of the static electromagnetic field
strengths is not essential in the wave zone.
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Taking into account that

sin αx

x
→ πδ(x) and

1

α

[
sin αx

x

]2

→ πδ(x) for α → ∞ (3.20)

one obtains from (3.19) for large ωt0

E(�n, ω, t1) = e2

πcn
δ(1 − βn cos θ)

[
ωt0(β

2
n − 1) − sinω

(
t1 − z0

v

)]
. (3.21)

For βn �= 1, the second term inside the square brackets may be discarded, and one obtains

E(�n, ω, t1) = e2

πcn
ωt0(β

2
n − 1)δ(1 − βn cos θ). (3.22)

For cos θ = 1/βn, equation (3.19) is reduced to

E(�n, ω, t1) = e2

πnc
(β2

n − 1)ω2t2
0 − e2

πnc
ωt0 sinω(t1 − t0).

It does not vanish at βn = 1.
Equations (3.17) and (3.19) generalize Tamm’s angular-frequency distribution (2.8) for

t1 �= t0.

3.4. Frequency distribution of the radiated energy

Integrating (3.17) over the solid angle one finds the following expression for the frequency
distribution of the radiated power for the case when the detection time 2t1 is smaller than the
motion time 2t0:

E(ω, t1) = e2β

πc

(
1 − 1

β2
n

){
cos(ω(t1 − t0)(1 − βn))

1 − βn
− cos(ω(t0 − t1)(1 + βn))

1 + βn

−cos(ω(t1 + t0)(1 − βn))

1 − βn
+

cos(ω(t1 + t0)(1 + βn))

1 + βn

+ω(t0 − t1)[si(ω(t0 − t1)(1 − βn)) − si(ω(t0 − t1)(1 + βn))]

−ω(t0 + t1)[si(ω(t0 + t1)(1 − βn)) − si(ω(t0 + t1)(1 + βn))]

}

− e2

πεv
[ci(ω(t0 − t1)|1 − βn|) − ci(ω(t0 − t1)(1 + βn))

−ci(ω(t0 + t1)|1 − βn|) + ci(ω(t0 + t1)(1 + βn))]. (3.23)

Now let t1 > t0 (i.e. the detection time is greater than the motion time). Then,

E(ω, t1) = 2e2β

πc
(βnI1 − I2) (3.24)
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where

I1 =
∫

sin3 θ dθ

[
sinωt0(1 − βn cos θ)

1 − βn cos θ

]2

= 1

βn

(
1 − 1

β2
n

){
sin2 ωt0(1 − βn)

1 − βn
− sin2 ωt0(1 + βn)

1 + βn

−ωt0[si(2ωt0(1 − βn)) − si(2ωt0(1 + βn))]

}

− 1

β3
n

[
ln

|1 − βn|
1 + βn

− ci(2ωt0|1 − βn|) + ci(2ωt0(1 + βn))

]

− 1

β2
n

− 1

4β3
nωt0

[sin(2ωt0(1 − βn)) − sin(2ωt0(1 + βn))]

I2 =
∫

sin θ cos θ dθ
sinωt0(1 − βn cos θ) sinω(t1 − t0βn cos θ)

1 − βn cos θ

= − 1

4β2
nωt0

sinω(t1 − t0)[cos(2ωt0(1 − βn)) − cos(2ωt0(1 + βn))]

− 1

βn
cosω(t1 − t0) − 1

4β2
nωt0

cosω(t1 − t0)

×[sin(2ωt0(1 − βn)) − sin(2ωt0(1 + βn))]

− 1

2β2
n

sinω(t1 − t0)[si(2ωt0(1 − βn)) − si(2ωt0(1 + βn))]

− 1

2β2
n

cosω(t1 − t0)

[
ln

|1 − βn|
1 + βn

− ci(2ωt0|1 − βn|) + ci(2ωt0(1 + βn))

]
.

The typical dependence of E on t0 for t1 fixed is shown in figure 1. For large ωt0 and βn < 1,
it oscillates around the zero value. For large ωt0 and βn > 1, E oscillates around the value

2e2ωt1β

c

(
1 − 1

β2
n

)

given by the Tamm–Frank theory [11]. In both cases the amplitude of oscillations decreases
as 1/ωt0 for large t0.

The typical dependence of E on t1 for t0 fixed is shown in figure 2. Since I2 is a periodic
function of t1 and I1 does not depend on t0, E oscillates around the value 2e2β2nI1/πc.
Previously, the frequency distribution of the radiated energy within the framework of Tamm’s
theory was given by Kobzev and Frank [16] and by Kobzev et al [17]. It is obtained by
integrating (2.8) over the angular variables:

dE
dω

= 2e2β

πc

(
1 − 1

β2
n

){
sin2 ωt0(1 − βn)

1 − βn
− sin2 ωt0(1 + βn)

1 + βn

−ωt0[si(2ωt0(1 − βn)) − si(2ωt0(1 + βn))]

}

− 2e2

πcnβn

[
ln

|1 − βn|
1 + βn

− ci(2ωt0|1 − βn|) + ci(2ωt0(1 + βn))

]

− e2

πcnβn

{
2βn +

1

2ωt0
[sin 2ωt0(1 − βn)) − sin 2ωt0(1 + βn))]

}
. (3.25)



Tamm’s problem in the Schwinger and exact approaches 7595

Figure 1. Energy E detected in a fixed time interval t1 as a function of charge motion time t0.
For βn < 1, E oscillates around zero. For βn > 1 it oscillates around the finite value (3.25). The
amplitude of oscillations decreases as 1/ωt0 for large motion time t0. E is given in units of e2/c

and t0 in units of t1.

Figure 2. Energy E as a function of the detection time t1 for the fixed motion time t0. The time
motion interval t0 is fixed. For βn < 1 and βn > 1, E oscillates around the Tamm’s values (2.5)
and (2.6), respectively. Contrary to the previous figure, there is no damping of oscillations. E is
given in units of e2/c; t1, in units of t0.

This expression coincides with the first term in (3.24) which involves I1. For large ωt0,
equation (3.25) turns into Tamm’s equations (2.5) and (2.6).

The frequency dependences of the energy radiated for time t1 are shown in figures 3 and 4.
In figure 3, one sees the frequency dependence for the case when the observation time 2t1 is
twice as small as the charge motion time 2t0. For βn < 1, the radiated energy is concentrated



7596 G N Afanasiev et al

Figure 3. Frequency dependence of the radiated energy for t1/t0 = 0.5. E is given in units of e2/c

and ω in units of 1/t0.

Figure 4. Frequency dependence of the radiated energy for t1/t0 = 2. E is given in units of e2/c

and ω in units of 1/t0.

near zero, while for βn > 1 it rises linearly with frequency

E ∼ 2e2ωt1βn

cn

(
1 − 1

β2
n

)
.

The frequency dependence for the case when the observation time 2t1 is twice the charge motion
time 2t0 is shown in figure 4. For βn < 1, the radiated energy oscillates around Tamm’s value

4e2

πcn

(
ln

1 + βn

1 − βn
− 1

)

while for βn > 1, it again rises linearly, but with a coefficient different from the t1 < t0 case:

E ∼ 2e2ωt0β

c

(
1 − 1

β2
n

)
.
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3.4.1. Large interval motion. Let the observation time be less than the motion time (t1 < t0).
Then, for ω(t0 − t1) � 1, E(ω, t1) is very small for βn < 1. On the other hand, for βn > 1,

E(ω, t1) = 2ωt1e2β

c

(
1 − 1

β2
n

)
. (3.26)

This coincides with the frequency distribution of the radiated energy over the whole charge
motion in Frank–Tamm theory.

Now let the observation time be greater than the motion time (t1 > t0). Then, for ωt0 � 1
(but t1 > t0), one obtains

E(ω, t1) ≈ − 2e2

πcn
[2 − cosω(t1 − t0)]

(
1 +

1

2βn
ln

1 − βn

1 + βn

)
(3.27)

for βn < 1 and

E(ω, t1) ≈ 2e2β

πc

{
πωt0

(
1 − 1

β2
n

)

− 1

βn
[2 − cosω(t1 − t0)]

(
1 +

1

2βn
ln

βn − 1

1 + βn

)
− π

2β2
n

sinω(t1 − t0)

}
(3.28)

for βn > 1.
The non-oscillating parts of these expressions coincide with equations (2.5) given by

Tamm. According to his own words, equations (2.5) ‘are obtained by neglecting the fast-
oscillating terms of the form sinωt0’ (Tamm gives only equations (2.5) and (2.6) without
deriving them). On the other hand, equation (3.25) obtained in [16, 17] gives in the limit
ωt0 → ∞ to Tamm’s expressions (2.5) with additional oscillating terms decreasing as 1/ωt0.

Since some terms in (3.23) and (3.24) depend on (1 − βn)(t0 − t1) and (1 − βn)(t0 + t1)

parameters, equations (3.26)–(3.28) are not valid for βn ∼ 1 (this corresponds to Cherenkov’s
threshold).

3.4.2. Frequency distribution on the Cherenkov threshold. Thus, the case βn = 1 needs
special consideration. One obtains

E(ω, t1) = − e2

πnc

[
ln

t0 − t1

t0 + t1
− ci(2ω(t0 − t1)) + ci(2ω(t0 + t1))

]
(3.29)

for t1 < t0. This expression tends to zero for t1 fixed and t0 → ∞.
On the other hand, for t1 > t0

E(ω, t1) = 2e2

πnc

{
[1 − 1

2 cosω(t1 − t0)][C + ln(4ωt0) − ci(4ωt0)]

−[1 − cosω(t1 − t0)]

[
1 − sin(4ωt0)

4ωt0

]

+ sinω(t1 − t0)

[
1 − cos(4ωt0)

4ωt0
− π

4
− 1

2
sin(4ωt0)

]}
. (3.30)

The non-oscillating part of this expression coincides with that given by Tamm [1]:

ET = 2e2

πnc
[C + ln(4ωt0) − 1].
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On the other hand, equation (3.27) obtained by Kobzev and Frank for βn = 1 goes into

EKF = 2e2

πnc

[
C + ln(4ωt0) − 1 − ci(4ωt0) +

sin(4ωt0)

4ωt0

]
.

For (t1 − t0) fixed and t0 → ∞, equation (3.30) is reduced to

E(ω, t1) → 2e2

πnc

{
[1 − 1

2 cosω(t1 − t0)][C + ln(4ωt0)]

−1 + cosω(t1 − t0) − sinω(t1 − t0)
[

1
4π + 1

2 sin(4ωt0)
]}
. (3.31)

In the limit t0 → ∞, EKF turns into ET plus oscillating terms decreasing as 1/ωt0. On the other
hand, the main result of section 3 is that Schwinger’s approach incorporates both Tamm–Frank
and Tamm problems. Tamm and Frank’s results are obtained when the observation time t1 is
smaller than the charge motion time t0 and t0 → ∞. In particular, there is no radiation in the
non-dispersive medium when the charge velocity is smaller than the velocity of light in the
medium. The radiated energy rises in direct proportion to the observation time t1 for βn > 1.
Tamm’s problem is obtained when t1 > t0 and t0 (and, therefore, t1) tends to ∞. The intensity
oscillates around Tamm’s value for βn < 1 and rises in proportion to the time of charge motion
t0 for βn > 1.

4. Exact electromagnetic fields in Tamm’s problem

Tamm’s energy flux (2.8) radiated during the whole charge motion into the solid angle d$ in
the frequency range dω is widely used by experimentalists for identification of the Cherenkov
radiation. The aim of this section is to compare (2.8) with the energy flux obtained by exact
solution of Tamm’s problem.

However, first, we elucidate which approximations were made during the transition from
the exact vector potential (2.1) to Tamm’s formula (2.8):

(a) Changing R by R0 outside the exponent means that the observation is made on the sphere
with radius R0 much larger than the motion interval z0, i.e.

R0 � z0. (4.1)

(b) Tamm’s field strengths (2.3) are valid only in the wave zone where

ωR0/cn � 1. (4.2)

(c) When changing R under the sign of the exponent in (2.1) by R0 − z′ cos θ , it is implicitly
assumed that the quadratic term in the expansion of R is small compared with the linear
one. Consider this more carefully. We expand R up to the second order:

R ≈ R0 − z′ cos θ +
z′2

2R0
sin2 θ.

Under the sign of the exponent in (2.1), the following terms appear:

z′

v
+

1

cn

(
R0 − z′ cos θ +

z′2

2R0
sin2 θ

)
.

We collect terms involving z′

z′

cn

[(
1

βn
− cos θ

)
+

z′

2R0
sin2 θ

]
.



Tamm’s problem in the Schwinger and exact approaches 7599

Taking for z′ its maximal value z0, we present the condition for the second term in the
expansion of R to be small in the form [7]

z0 � 2R0

(
1

βn
− cos θ

)/
sin2 θ. (4.3)

It is seen that the right-hand side of this equation vanishes for cos θ = 1/βn, i.e. at the angle
where the Cherenkov radiation exists. Therefore, in this angular region the second-order
terms may be important.

(d) Under the sign of the exponent in (2.1) the second-order term should be small compared
with π , i.e. the inequality

z′2ω sin2 θ

2R0cn
� π (4.4)

should hold. Or, taking for θ and z′ their maximal values (θ = π/2, z′ = z0), one obtains
[11]

z2
0ω

2R0cn
� π. (4.5)

From (4.2) and (4.5) one finds the following restriction on ω:

cn

R0
� ω � 2πR0cn

z2
0

. (4.6)

In the λ language (ω = 2πc/λ) this condition looks like

nz2
0

R0
� λ � 2πnR0. (4.7)

Let λ = 4 × 10−5 cm (the middle of the optical region), n = 1.5 (glass). For the typical
value R = 100 cm, the right-hand side of the inequality (4.7) is fulfilled to a great degree
of accuracy. Then the left-hand side of (4.7) gives z0 � 5 × 10−2 cm. On the other hand,
z0 should not be too small. In fact, for knz0 � 1, Tamm’s formula (2.8) is reduced to

d2E
dω d$

∼ e2 sin2 θω2t2
0

π2cnβ2
n

i.e. the Cherenkov diffraction picture disappears. Therefore, the width interval 10−4 <

z0 < 10−2 cm turns out to be optimal for the validity of Tamm’s formula and the existence
of the pronounced Cherenkov maximum in the treated case.

It should be noted that for gases, these restrictions are less restrictive than for solids and
liquids. In fact, since for them βn ≈ 1, one obtains(

1

βn
− cos θ

)/
sin2 θ ≈ 1 − cos θ

sin2 θ
= 1/2 cos2(θ/2).

Since for gases the angular spectrum is confined to the θ ≈ 0 region, equation (4.3) is reduced
to (4.1). The same is true for equation (4.4). As a result, for gases, Tamm’s expression (2.8)
for the radiated power works when equations (4.1) and (4.2) are fulfilled.

Conditions (4.1)–(4.7) ensuing the validity of Tamm’s expressions are spread over different
sources. We collected them together to make the interpretation of the numerical results given
below easier.
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The radial energy flux through the unit solid angle of sphere of the radius R0 for the whole
time of charge motion is given by

dW

d$
= c

4π
R2

0

∫ ∞

−∞
dt ( �E × �H)r d$. (4.8)

Expressing �E and �H through their Fourier transforms

�E =
∫

exp(iωt) �Eω dω �H =
∫

exp(iωt) �Hω dω

and integrating over t , one obtains

dW

d$
= cR2

0

2

∫ ∞

−∞
( �E(ω) × �H(−ω)) dω =

∫ ∞

0
S(ω) dω (4.9)

where

S(ω) = d2W

dω d$
= cR2

0

[ �E(r)
θ (ω) �H(r)

φ (ω) + �E(i)
θ (ω) �H(i)

φ (ω)
]
. (4.10)

This quantity shows how the Fourier component of the energy radiated for the whole time of
charge motion is distributed over the sphere S. It does not depend on time. The superscripts
(r) and (i) mean the real and imaginary parts of Eθ and Hφ . Exact field strengths obtained by
differentiation of the exact vector potential (2.1) are given by

H
(r)
φ = eknz0

2πcR0
sin θ

∫
G

R2
dz′ H

(i)
φ = eknz0

2πcR0
sin θ

∫
F

R2
dz′

E
(r)
θ = ek2

nz0

2πωεR0
sin θ

( ∫
1 − z′ε0 cos θ

R3
F1 dz′ − 2

knR0

∫
F

R2
dz′

)

E
(i)
θ = ek2

nz0

2πωεR0
sin θ

( ∫
1 − z′ε0 cos θ

R3
G1 dz′ +

2

knR0

∫
G

R2
dz′

)
(4.11)

where

F = cosψ − 1

knR0R
sinψ G = sinψ +

1

knR0R
cosψ

F1 = sinψ + 3
cosψ

knR0R
− 3

sinψ

k2
nR

2
0R

2
G1 = cosψ − 3

sinψ

knR0R
− 3

cosψ

k2
nR

2
0R

2

ψ = knR0

(
z′ε0

βn
+ R

)
R = (1 − 2z′ε0 cos θ + ε2

0z
′2)1/2 ε0 = z0/R0.

The z′ integration in (4.10) is performed over the interval (−1, 1). For ε0 � 1 and knR0 � 1,
S(ω) given by (4.10) transforms into Tamm’s formula (2.8):

ST = e2 sin2 θ

π2nc

[
sin knz0(cos θ − 1/βn)

cos θ − 1/βn

]2

. (4.12)

There are three geometric parameters of the length dimension entering into (4.11) and (4.12):
the motion interval L = 2z0; the radius of the observation sphere R0 and the vacuum
wavelength λ = 2πc/ω related to the medium wavelength λn = λ/n. It is essential that these
parameters enter into the energy flux and field strengths through dimensionless combinations,

ε0 = z0

R0
= L

2R0
knz0 = πnL

λ
knR0 = 2πnR0

λ
= knz0

ε0
.
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Figure 5. Exact (full curve) and Tamm’s approximate (dotted curve) angular dependences for
ε0 = z0/R0 = 0.1, L/λ = 30, βn = 1.2, n = 1.5 in the linear (left) and logarithmic (right) scales.
In figures 5–8, z0 and R0 are the same but λ changes.

Thus, if only λ changes, ε0 remains the same, but knz0 and knR0 vary. The typical exact (4.10)
and Tamm’s (4.12) intensities for the fixed ε0 = 0.1 and different L/λ are shown in figures 5–
8 in logarithmic and usual scales. For convenience, we made the intensities dimensionless
(dividing them by the factor e2/c). All the subsequent figures refer to n = 1.5, βn = 1.2.
We see that Tamm’s intensities are close to the exact ones for small and moderate L/λ ratios
(figure 5). Their difference becomes essential for large L/λ (figures 6–8). These figures
demonstrate that the disagreement between Tamm’s and the exact intensities may be essential
despite the fact that ε0 is small (ε0 = 0.1), and knR0 is large (knR0 ≈ 5 × 103, 104 and 2 × 104

for figures 6–8, respectively). The reason for this is due to the violation of (4.5). In fact,
the left-hand side of (4.5) equals approximately 20, 40 and 100 for the situations shown in
figures 6–8, respectively.

Another degree of freedom is to change only R0. In this case, L/λ remains the same,
but ε0 and knR0 change. The typical intensities for L/λ = 200 and different ε0 are shown in
figures 7, 9 and 10. It is seen that disagreement between Tamm’s intensity and the exact one
increases sharply when z0 approaches R0 (as it should).

The last possibility is to change only z0. In the language of dimensionless variables, this
means that knR0 remains the same, while knz0 and ε0 change in such a way that their ratio
remains the same. Figures 7, 11 and 12 demonstrate that the disagreement between Tamm’s
and the exact intensities increases with z0.

Previously, the experimentally observed broadening of the Cherenkov angular spectrum
was attributed to the energy loss of a charged particle during its motion in the medium [18, 19].
However, figures 6–8, and 10–12 demonstrate that the above broadening may be well associated
with the violation of conditions (4.1)–(4.7). To be more specific, we turn to [19] in which the
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Figure 6. The same as in figure 5, but for smaller λ corresponding to L/λ = 100. The deviation
of the approximate curve from the exact one increases as λ diminishes.

Figure 7. The same as in figure 6, but for L/λ = 200.
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Figure 8. The same as in figure 6, but for L/λ = 500.

Figure 9. For small ε0, the deviation of the approximate curve from the exact one is not very large.
In figures 7, 9 and 10, L and λ are the same, but R0 changes.
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Figure 10. The same as in figure 9, but for greater R0 corresponding to ε0 = 0.5. The deviation
of the approximate curve from the exact one is essential.

Figure 11. For small and moderate z0 corresponding to ε = 0.05, the deviation of the approximate
curve from the exact one is not essential. Figures 7, 11 and 12 correspond to the same λ and R0,
but different z0.
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Figure 12. The same as in figure 11 but for larger z0 corresponding to ε = 0.25. The deviation of
the approximate curve from the exact one becomes essential when z0 approaches R0.

angular distribution of the radiation (λ ≈ 4 × 10−5 cm) arising from the passage of Au heavy
ions (β ≈ 0.87) through the LiF slab (n ≈ 1.39) of width 0.5 cm was studied. Substituting
these parameters into (4.5), we see that the left-hand side of this equation coincides with π

for the observation sphere radius R0 ≈ 400 m. Obviously, this value is unrealistic. Since the
realistic R0 is about 1–2 m, a strong violation of (4.5) takes place.

The moral of this section is that one should be very careful when applying Tamm’s formula
(2.8) to the analysis of experimental data. The validity of conditions (4.1)–(4.7) ensuring the
validity of (2.8) should be verified. The exact energy flux (4.10) should be used if these
conditions are violated.

5. Conclusion

Let us briefly summarize the main results obtained.

(a) Within the framework of Schwinger’s approach, closed expressions are obtained for the
frequency and angular distributions for the energy radiated by a point charge moving
uniformly in a medium in a finite space interval (Tamm’s problem). They generalize the
formulae given by Frank and Tamm and are reduced to them in particular cases.

(b) Tamm’s approximate formula describing the frequency-angular distribution of the radiated
energy in Tamm’s problem is compared with the exact one. Criteria for the validity of
Tamm’s formula are checked by numerical calculations.
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